为了使用遗传算法来解决优化问题,准备工作分为以下四步[56,57,61]。
7.4.1 确定问题的潜在解的遗传表示方案
在基本的遗传算法中,表示方案是把问题的搜索空间中每个可能的点表示为确定长度的特征串(通常是二进制串)。表示方案的确定需要选择串长l和字母表规模k。在染色体串和问题的搜索空间中的点之间选择映射有时容易实现,有时又非常困难。选择一个便于遗传算法求解问题的表示方案经常需要对问题有深入的了解。
7.4.2 确定适应值的度量
适应值度量为群体中每个可能的确定长度的特征串指定一个适应值,它经常是问题本身所具有的。适应值度量必须有能力计算搜索空间中每个确定长度的特征串的适应值。
7.4.3 确定控制该算法的参数和变量
控制遗传算法的主要参数有群体规模Pop-Size、算法执行的最大代数N-Gen、交叉概率Pc、变异概率Pm和选择策略R等参数。
(1)群体规模Pop-Size。群体规模影响到遗传算法的最终性能和效率。当规模太小时,由于群体对大部分超平面只给出了不充分的样本量,所以得到的结果一般不佳。大的群体更有希望包含出自大量超平面的代表,从而可以阻止过早收敛到局部最优解;然而群体越大,每一代需要的计算量也就越多,这有可能导致一个无法接受的慢收敛率。
(2)交叉率Pc。交叉率控制交叉算子应用的频率,在每代新的群体中,有Pc·Pop-Size个串实行交叉。交叉率越高,群体中串的更新就越快。如果交叉率过高,相对选择能够产生的改进而言,高性能的串被破坏得更快。如果交叉率过低,搜索会由于太小的探查率而可能停滞不前。
(3)变异率Pm。变异是增加群体多样性的搜索算子,每次选择之后,新的群体中的每个串的每一位以相等的变异率进行随机改变。对于M进制串,就是相应的位从1变为0或0变为1。从而每代大约发生Pm·Pop-Size·L次变异,其中L为串长。一个低水平的变异率足以防止整个群体中任一给定位保持永远收敛到单一的值。高水平的变异率产生的实质是随机搜索。
比起选择和交叉,变异在遗传算法中是次要的,它在恢复群体中失去的多样性方面具有潜在的作用。例如,在遗传算法执行的开始阶段,串中一个特定位上的值1可能与好的性能紧密联系,也就是说从搜索空间中某些初始随机点开始,在那个位上的值1可能一致地产生适应性度量好的值。因为越好的适应值与串中那个位上的值1相联系,复制作用就越会使群体的遗传多样性损失。当达到一定程度时,值0会从整个群体中的那个位上消失,然而全局最优解可能在串中那个位上是0。一旦搜索范围缩小到实际包含全局最优解的那部分搜索空间,在那个位上的值0就可能正好是达到全局最优解所需的。这仅仅是一种说明搜索空间是非线性的方式,这种情形不是假定的,因为实际上所有我们感兴趣的问题都是非线性的。变异作用提供了一个恢复遗传多样性的损失的方法。
(4)选择策略R。有两种选择策略。一是利用纯选择,即当前群体中每个点复制的次数比与点的性能值成比例。二是利用最优选择,即首先执行纯选择,且具有最好性能的点总是保留到下一代。在缺少最优选择的情况下,由于采样误差、交叉和变异,最好性能的点可能会丢失。
通过指定各个参数Pop-Size、Pc、Pm和R的值,可以表示一个特定的遗传算法。
7.4.4 确定指定结果的方法和停止运行的准则
当遗传的代数达到最大允许代数时,就可以停止算法的执行,并指定执行中得到的最好结果作为算法的结果。
基本的遗传算法
1)随机产生一个由固定长度字符串组成的初始群体。
2)对于字符串群体,迭代地执行下述步骤,直到选择标准被满足为止。
①计算群体中的每个个体字符串的适应值;
②实施下列三种操作(至少前两种)来产生新的群体,操作对象的选取基于与适应度成比例的概率。
选择:把现有的个体串按适应值复制到新的群体中。
交叉:通过遗传重组随机选择两个现有的子串进行遗传重组,产生两个新的串。
变异:将现有串中某一位的字符随机变异产生一个新串。
3)把在后代中出现的最好适应值的个体串指定为遗传算法运行的结果。这一结果可以是问题的解(或近似解)。
基本的遗传算法流程图如图7-1所示。
遗传算法的基本原理
遗传算法是一种进化算法,进化是什么哪?就是种群逐渐适应生存环境,种群中个体不断得到改良的过程。
遗传算法是一种对生物遗传的模拟、在算法中,初始化一个种群,种群中的每个染色体个体都是一种解决方案,我们通过适应性fitness来衡量这个解决方案的好坏。并对它们进行选择、变异、交叉的操作,找到最优的解决方案。
总结一下遗传算法的基本的步骤:
1.初始化一个种群,并评估每条染色体所对应个体的适应度。
2.选择、交叉、变异,产生新的种群
3.再评估每个个体的适应值,如果适应值达到要求或者达到最大循环次数,否则重复2,不断产生新种群。
知道了GA的大致流程之后、来具体分析一下细节,怎么实现吧
我们知道遗传算法起源于生物遗传,因此在种群中每个个体就是一个染色体,那如何对染色体进行编码,让它表示我们的解决方案那(就是把现实要优化的参数用编码表示成一个染色体)。这里就遇到了一个编码、解码的问题,我们将需要优化的目标编码成染色体,然后再解码为我们可以用来计算fitness的解;
一般在进行参数优化时,一般有两种方式:实数编码、二进制编码
实数编码:基因直接用实数进行表示,这样的表示方法比较简单,不用特意解码了,但是在交叉和变异时,容易过早收敛,陷入局部最优。
二进制编码:将基因用二进制的形式表示,将参数的值转化为二进制形式,这样交叉、变异时更好操作,多样性好,但是占用的存储空间大,需要解码。
染色体就称为个体。对于一次实验,个体就是需要优化参数的一种解、许多这样的个体就构成了种群。
在面对群体中那么多个体时,如何判断个体的好坏呢,就是通过适应值函数了,将解带入适应值函数,适应值越大、解越好。
在遗传算法中,我们怎么使得里面的个体变得越来越优秀呢?
核心思想就是:选择优秀的、淘汰不好的,并且为了生成更好的解,我们要尝试交叉、变异,带来新的解。
选择就是从当前的种群中选择出比较好的个体、淘汰不好的个体
常见的选择方法有:轮盘赌选择、锦标赛选择、最佳保留选择等等
轮盘赌选择就是根据每个个体fitness和种群所有fitness之和比较,确定每个个体被选中的概率,然后进行n次选择,选择n个个体构成新种群,是一种放回抽样的方式。
锦标赛就是每次从种群中选择m个个体,选择最优的,放入新种群,重复选择,直到新种群中个体数目达到n。
最佳保留选择就是在轮盘赌的基础上,将fitness个体先加进新种群,因为轮盘赌是一种概率模型,可能存在最优个体没有进入新种群的情况。
在选择之后,就要考虑产生新的、更优秀的解,为种群带来新的血液。遗传算法的思路是交叉两个优秀的解,往往get好的解。
交叉通过在经过选择的种群中,随机选择一对父母,将它们的染色体进行交叉,生成新的个体,替代原来的解。
常用的交叉方法有:单点交叉、多点交叉等等。
交叉就像生物里面,染色体交换基因一样的~但是并不是种群中所有个体都进行交叉的,实现时可以,设置一个交叉率和交叉概率,随机选择种群中两个体、随机一个数,小于交叉率就进行交叉操作,并根据交叉概率判断交叉的程度,从而生成新个体,反之就保留这两个体。
变异也是一种产生新个体的方式,通过改变个体上基因,期望产生更好的解。比如在以二进制编码的个体上,将里面的0、1进行等位变化啥的,就是0变1、1变0这样。同样也要考虑变异率、变异产生的新解是不可控的,可能很好,也可能很坏,不能像交叉一样,确保一定的效果,所以往往变异率设置的比较小。
遗传算法的基本原理和方法
一、编码
编码:把一个问题的可行解从其解空间转换到遗传算法的搜索空间的转换方法。
解码(译码):遗传算法解空间向问题空间的转换。
二进制编码的缺点是汉明悬崖(Hamming Cliff),就是在某些相邻整数的二进制代码之间有很大的汉明距离,使得遗传算法的交叉和突变都难以跨越。
格雷码(Gray Code):在相邻整数之间汉明距离都为1。
(较好)有意义的积木块编码规则:所定编码应当易于生成与所求问题相关的短距和低阶的积木块;最小字符集编码规则,所定编码应采用最小字符集以使问题得到自然的表示或描述。
二进制编码比十进制编码搜索能力强,但不能保持群体稳定性。
动态参数编码(Dynamic Paremeter Coding):为了得到很高的精度,让遗传算法从很粗糙的精度开始收敛,当遗传算法找到一个区域后,就将搜索现在在这个区域,重新编码,重新启动,重复这一过程,直到达到要求的精度为止。
编码方法:
1、 二进制编码方法
缺点:存在着连续函数离散化时的映射误差。不能直接反映出所求问题的本身结构特征,不便于开发针对问题的专门知识的遗传运算算子,很难满足积木块编码原则
2、 格雷码编码:连续的两个整数所对应的编码之间仅仅只有一个码位是不同的,其余码位都相同。
3、 浮点数编码方法:个体的每个基因值用某一范围内的某个浮点数来表示,个体的编码长度等于其决策变量的位数。
4、 各参数级联编码:对含有多个变量的个体进行编码的方法。通常将各个参数分别以某种编码方法进行编码,然后再将他们的编码按照一定顺序连接在一起就组成了表示全部参数的个体编码。
5、 多参数交叉编码:将各个参数中起主要作用的码位集中在一起,这样它们就不易于被遗传算子破坏掉。
评估编码的三个规范:完备性、健全性、非冗余性。
二、选择
遗传算法中的选择操作就是用来确定如何从父代群体中按某种方法选取那些个体遗传到下一代群体中的一种遗传运算,用来确定重组或交叉个体,以及被选个体将产生多少个子代个体。
常用的选择算子:
1、 轮盘赌选择(Roulette Wheel Selection):是一种回放式随机采样方法。每个个体进入下一代的概率等于它的适应度值与整个种群中个体适应度值和的比例。选择误差较大。
2、 随机竞争选择(Stochastic Tournament):每次按轮盘赌选择一对个体,然后让这两个个体进行竞争,适应度高的被选中,如此反复,直到选满为止。
3、 最佳保留选择:首先按轮盘赌选择方法执行遗传算法的选择操作,然后将当前群体中适应度最高的个体结构完整地复制到下一代群体中。
4、 无回放随机选择(也叫期望值选择Excepted Value Selection):根据每个个体在下一代群体中的生存期望来进行随机选择运算。方法如下
(1) 计算群体中每个个体在下一代群体中的生存期望数目N。
(2) 若某一个体被选中参与交叉运算,则它在下一代中的生存期望数目减去0.5,若某一个体未被选中参与交叉运算,则它在下一代中的生存期望数目减去1.0。
(3) 随着选择过程的进行,若某一个体的生存期望数目小于0时,则该个体就不再有机会被选中。
5、 确定式选择:按照一种确定的方式来进行选择操作。具体操作过程如下:
(1) 计算群体中各个个体在下一代群体中的期望生存数目N。
(2) 用N的整数部分确定各个对应个体在下一代群体中的生存数目。
(3) 用N的小数部分对个体进行降序排列,顺序取前M个个体加入到下一代群体中。至此可完全确定出下一代群体中M个个体。
6、无回放余数随机选择:可确保适应度比平均适应度大的一些个体能够被遗传到下一代群 体中,因而选择误差比较小。
7、均匀排序:对群体中的所有个体按期适应度大小进行排序,基于这个排序来分配各个个体被选中的概率。
8、最佳保存策略:当前群体中适应度最高的个体不参与交叉运算和变异运算,而是用它来代替掉本代群体中经过交叉、变异等操作后所产生的适应度最低的个体。
9、随机联赛选择:每次选取几个个体中适应度最高的一个个体遗传到下一代群体中。
10、排挤选择:新生成的子代将代替或排挤相似的旧父代个体,提高群体的多样性。
三、交叉
遗传算法的交叉操作,是指对两个相互配对的染色体按某种方式相互交换其部分基因,从而形成两个新的个体。
适用于二进制编码个体或浮点数编码个体的交叉算子:
1、单点交叉(One-point Crossover):指在个体编码串中只随机设置一个交叉点,然后再该点相互交换两个配对个体的部分染色体。
2、两点交叉与多点交叉:
(1) 两点交叉(Two-point Crossover):在个体编码串中随机设置了两个交叉点,然后再进行部分基因交换。
(2) 多点交叉(Multi-point Crossover)
3、均匀交叉(也称一致交叉,Uniform Crossover):两个配对个体的每个基因座上的基因都以相同的交叉概率进行交换,从而形成两个新个体。
4、算术交叉(Arithmetic Crossover):由两个个体的线性组合而产生出两个新的个体。该操作对象一般是由浮点数编码表示的个体。
四、变异
遗传算法中的变异运算,是指将个体染色体编码串中的某些基因座上的基因值用该基因座上的其它等位基因来替换,从而形成以给新的个体。
以下变异算子适用于二进制编码和浮点数编码的个体:
1、基本位变异(Simple Mutation):对个体编码串中以变异概率、随机指定的某一位或某几位仅因座上的值做变异运算。
2、均匀变异(Uniform Mutation):分别用符合某一范围内均匀分布的随机数,以某一较小的概率来替换个体编码串中各个基因座上的原有基因值。(特别适用于在算法的初级运行阶段)
3、边界变异(Boundary Mutation):随机的取基因座上的两个对应边界基因值之一去替代原有基因值。特别适用于最优点位于或接近于可行解的边界时的一类问题。
4、非均匀变异:对原有的基因值做一随机扰动,以扰动后的结果作为变异后的新基因值。对每个基因座都以相同的概率进行变异运算之后,相当于整个解向量在解空间中作了一次轻微的变动。
5、高斯近似变异:进行变异操作时用符号均值为P的平均值,方差为P2的正态分布的一个随机数来替换原有的基因值。
本文来自作者[夜东流]投稿,不代表天华号立场,如若转载,请注明出处:https://thwy.com.cn/th/1045.html
评论列表(4条)
我是天华号的签约作者“夜东流”!
希望本篇文章《遗传算法的主要步骤》能对你有所帮助!
本站[天华号]内容主要涵盖:生活百科,小常识,生活小窍门,知识分享
本文概览:为了使用遗传算法来解决优化问题,准备工作分为以下四步[56,57,61]。7.4.1 确定问题的潜在解的遗传表示方案在基本的遗传算法中,表示方案是把问题的搜索空间中每个可能的点...